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Abstract

Extending a recent theoretical work from the author, it
is shown here that it is indeed possible to analytically
describe the beam shape coefficients (BSCs) of an
interesting and promising type of optical field known as
zero-order continuous frozen wave (CFW), at least under an
on-axis configuration. This represents a first step towards a
full analytical incorporation of CFWs in the framework of
the generalized Lorenz-Mie theory (GLMT). As will be
seen, such a construction demands several intermediate
steps which might also be wuseful for describing
azimuthally-symmetric beams, whenever its spectrum — in
terms of the longitudinal wave number - is known a priori.

1 Brief Introduction and Theoretical Aspects

An optical CFW is a continuous sum of propagating
(non-evanescent) Bessel beams. Omitting a time-harmonic
convention exp(+iwt), where o is the angular frequency,
and assuming +z free space propagation, its scalar version
(which serves as a building block for the construction of
vector beams) is written as [1-3]:

v(p.2)=v, [ SU)Jy(k,pye ™ dk, (1)

In Eq. (1), k = 2n/4 is the wave number, with A being the
wavelength, k: and kr are the longitudinal and transverse
wave number, respectively and Jo(.) is the zero-order
Bessel function. Cylindrical coordinates (p,4z) are
assumed attached to both a Cartesian (x,y,z) and a
spherical (r,6,¢) coordinate system. In the GLMT, the
origin O of the (x,y,z) system coincides with the centre of a
spherical scatterer [4].

A zero-order CFW is
superposition of Bessel beams. It is,
superposition of a very special kind, since its spectrum
S(kz) is made attached to its pre-defined longitudinal
intensity pattern |F(z)|2 which, in turn, is defined within
—-L/2 £z < L/2. Indeed, by expandmg S(kz) into a truncated
Fourier series, S(k.)= Zl A exp(inlk./k) , the
expansion coefficients Ar are given by [1,2]:
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that is, the expansion coefficients are sampled values of the
reference function F(z),
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In a recent work [3], the authors have shown that a full
analytical description of the BSCs of vector versions of Eq.
(1), with different polarizations and for arbitrary off-axis
configuration, would be possible if: (i) certain special
functions, viz.,
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can be Fourier expanded, and (ii) integrals of the form
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can be analytically evaluated. Both problems have been
left open in [3].

In Eq. (3), the upper and lower signs in the Lh.s. refer to
the first or the second of the upper indices in the r.h.s,
respectively. Besides, n > 1 and —n < m < n, with n and m
integers, and " (x) = —(1—x*)"? dP" (x)/dx and
a"(x)=P"(x)/(1-x*)"* are generalized Legendre
functions [4], with P"(x) being the associated Legendre
polynomials according to Hobson’s definition [5]. In Eq.
(4), j =1 to 4, and one considers that the original scalar
beam in Eq. (1), after being taken as one of the transverse
electric field components depending on the chosen
polarization, is subsequently and arbitrarily displaced by
(py9,,2,) from the origin O.

The TM (Transverse Magnetic) and TE (Transverse
Electric) BSCs, g,';,, and g, are then written in terms of
Eq. (4). As an example, for x-polarized CFWs, it can be
shown that [3]:
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with similar expressions for y-, circular, azimuth and
radial polarizations.

If, at one hand, it might be challenging to find explicit
analytical solutions to Eq. (4) for off-axis CFWs, the
situation becomes tractable for p, =0, that is, for on-axis
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beams. Under this configuration, the Bessel functions
appearing in Eq. (4) are either 1 (whenm=+1, forj=1to 4,
or when m =0, for I ,f ) or 0. Under such conditions, the
exponentials containing ¢, disappear, and the integrals
can be readily evaluated, thus allowing one to write, with
the aid of Fourier expansions for S(k:) and bi(k:), explicit
analytical expressions to Egs. (5) and (6):
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In Egs. (7) and (8), Si[.] is the sine integral function and
4 is the Kronecker delta. In addition, B; (j=1 to 4) are the
Fourier coefficients of the functions defined according to
Eq. (3), and they read as:
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In Egs. (9)-(12), Q(n,j) is the integer part of (n-j)/2, B(w,v)
is the Beta function and | F,(a;/f,,/,;x) is the generalized
hypergeometric function. In addition, gz =u,=q+1,
Hy=q+2 , u;=Q2q+3)/2 , v=vi=(n-2q+1)/2 ,
vy =(-¢q)/2 and v, =(n—g+2)/2 . Finally, a)’ are
coefficients which depend on the values of g, n and j, see
Eq. (3) of [6].

2 Computational Examples

As an example of computation of CFWs in the GLMT,
we consider a x-polarized field with a reference function
F(z) = exp[-8(2z/L)*]cos(8zz/ L)exp(—iQz) , where L = 44
pum. Here, Q = 0.75k determines the degree of paraxiality of
the beam, its transverse field concentration and the central

position of S(k:). For the simulations, A = 1064 nm, free
space propagation is assumed and we have truncated the
sum over p in Egs. (7) and (8) at p = pmax = 100. Field
reconstructions in the GLMT are in accordance with
[7], with expressions for the
electromagnetic field components in terms of partial wave
expansions available elsewhere, see Egs. (3.39)-(3.50) of [4].

Figure 1(a) shows S(k.) for the chosen reference
function F(z), while Figure 1(b) illustrates ‘(//(O,z)‘2 and
[F(z)’|. Tn Egs. (7) and (8), Imax = ceil[L/2], with ceil[]
denoting the ceiling function, see [1] for details. It is seen
that, for the chosen parameters, Eq. (1) adequately
reproduce the intended F(z) . Density plots of the
expected electric field intensities Ex(p,z)‘2 and ‘E:(p,z)‘2
at the xz plane are shown in Figure 2.

The electric field components reconstructed from the
GLMT expressions, along p = 0, can be appreciated in
Figure 3(a). The curve for ‘1//(0,2)‘2 is again shown for
reference purposes. As observed from Figure 3(b) from the
logarithmic error ln[(w(o,z)z_ EX(O,Z)Z)/‘W(O,Z)‘Z , an
excellent field reconstruction is achieved, at least along p =
0, which is the region of most interest for practical
applications. It can be shown, by plotting |y/(p,z = z’)‘2 for
distinct z', that an excellent agreement is also observed in
the transverse direction.
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Figure 1 (a) S(k.) as a function of k, for the given reference
function F(z). (b) ‘VI(O,Z)‘Z and ‘F(z)2 , the former being
calculated from Eq. (1)

3 Conclusions
An analytical method for the evaluation of the beam
shape coefficients of zero-order continuous frozen waves
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has been presented under an on-axis configuration. This is
a first step towards a full incorporation of such beams in
the generalized Lorenz-Mie theory envisioning light
scattering applications. Interestingly enough, the method
here presented is also suitable for describing on-axis
azimuthally-symmetric arbitrary-shaped beams. In this
case, however, there is no direct relation between the
Fourier coefficients of their spectra and a pre-chosen
reference function as expressed here in Eq. (2). This means
that their spectra must be known a priori for each
particular shaped beam, which might not always be in
terms of as shown by the coefficients in Eq. (2).
Continuous frozen waves, being a class of micrometer-
structured non-diffracting beams, can be of interest in
applications ranging from optical tweezers and bistouries,
2D and 3D imaging and printing, holography and so on,
and an extension of the present work for arbitrary-order
beams under off-axis configuration is certainly deserved.
This is current in progress
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Figure 2 Density plot of (a) |E, (p,z)‘2 and (b) ‘E:(p,z)‘z at
the xz plane, corresponding to the reference function F(z) of
Figure 1(b)
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reconstructed using the GLMT [4]. (b) Correspondin,
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